Received 17 July 2006

Accepted 31 July 2006

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Moumita Sen Sarma,^a Carol A. Ellis,^b Nirmalya Moitra,^a Abhijit Roy^a‡ and Edward R. T. Tiekink^b*

^aDepartment of Chemistry, North Bengal University, Dt. Darjeeling, West Bengal 734 013, India, and ^bDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA

‡ Correspondence e-mail: abhijitchem1947@yahoo.co.in

Correspondence e-mail: edward.tiekink@utsa.edu

Key indicators

Single-crystal X-ray study T = 173 K Mean σ (C–C) = 0.008 Å R factor = 0.050 wR factor = 0.117 Data-to-parameter ratio = 17.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Di- μ_2 -methoxo-bis[benzyl(5-chloro-2-oxidobenzaldehyde thiosemicarbazonato)tin(IV)]

The centrosymmetric title compound, $[Sn_2(C_7H_7)_2-(C_8H_6ClN_3OS)_2(CH_3O)_2]$, displays octahedrally coordinated tin within a CNO₃S donor set. Molecules aggregate *via* N-H···N hydrogen bonds, leading to a chain, and these bonds combined with N-H··· π and C-H··· π interactions lead to a three-dimensional array.

Comment

Interest in compounds related to the title compound stems from their potential biological activity (Farrell, 2002; Gielen & Tiekink, 2005). The title organotin thiosemicarbazone, (I), was isolated as yellow prisms from the attempted recrystallization of an authenticated sample of (PhCH₂)₂SnL, where LH₂ is pchlorosalicylaldehydethiosemicarbazone, from a methanol solution. The crystal structure analysis shows a centrosymmetric molecule (Fig. 1) in which two (PhCH₂)Sn entities are symmetrically bridged by two methoxide ligands (Table 1). The distorted octahedral coordination geometry for Sn is completed by N-, O- and S-donor atoms derived from the dinegative and tridentate L^{2-} ligand. Distortions from ideal geometry may be traced to the strain found in the centrosymmetric Sn₂O₂ core and chelate rings.

Molecules are held in a three-dimensional array by a combination of N-H···N, N-H··· π and C-H··· π interactions. The hydrogen bonding between N1-H1A and N2ⁱⁱ [symmetry code: (ii) 1 - x, -y, 1 - z] leads to the formation of chains along [101] (see Fig. 2). The parameters associated with

© 2006 International Union of Crystallography All rights reserved

Figure 1

The molecular structure and atom-labelling scheme for (I), showing 50% probability displacement ellipsoids. [Symmetry code: (i) -x, -y, -z.]

Figure 2

Chains mediated by N-H···H hydrogen-bonding interactions, shown as golden dashed lines, in (I) (Crystal Impact, 2006). Colour code: Sn (brown), Cl (cyan), S (yellow), O (red), N (blue), C (grey) and H (green).

these interactions are $N1-H1A\cdots N2^{ii} = 2.26$ Å and $N1 \cdot \cdot \cdot N2^{ii} = 3.126$ (6) Å with an angle of 169° at H1A. While not involved in a conventional hydrogen-bonding interaction, the amine atom H1B forms an N-H··· π interaction with the ring centroid of the aromatic portion of a tin-bound benzyl residue so that the N1-H1B···ring centroid (C10-C15)ⁱⁱⁱ distance is 2.81 Å with an angle of 176° at H1B [symmetry code: (iii) $1 - x, -\frac{1}{2} + y, \frac{1}{2} - z$]; some of these interactions are highlighted with an '(a)' in Fig. 3. The methoxide-bound methyl-H atoms form $C-H\cdots\pi$ interactions with the sixmembered aromatic ring (C3-C8)^{iv} so that the H. ring centroid distance is 2.66 Å and the angle at H is 122° [symmetry code (iv) $x, \frac{1}{2} - y, -\frac{1}{2} + z$], shown as '(b)' in Fig. 3.

Experimental

The compound was isolated as a decomposition product of a sample of (C₆H₅CH₂)₂SnL₂ during attempted recrystallization from MeOH

solution (m.p. 417-419 K). A methanol solution (100 ml) of pchlorosalicyldehydethiosemicarbazone (0.500 g, 2.17 mmol), prepared by a literature procedure (Basuli et al., 1998), was stirred continuously in a 0.1 N methanol NaOH solution (45.9 ml, 0.174 g, 4.35 mmol) for 2 h. (C₆H₅CH₂)₂SnCl₂ (0.809 g, 2.17 mmol), prepared by a literature procedure (Sisido et al., 1961), was then added to the reaction mixture which was refluxed for 6 h under an inert atmosphere. The volatiles were removed by distillation and the crude product obtained was washed thoroughly with hot petroleum ether (b.p. 333-353 K) in quantities of 4-5 ml, extracted into benzene (50 ml) and filtered. The yellow crystalline product was obtained upon repeated crystallization from the benzene extract. Yield 30%. IR (Bruker Equinox SS; cm⁻¹): v(NH₂) 3285, v(C=N)_{azo} 1619, ν (C=N)_{thia} 1596, ν (C-O) 1184, ν (C-S) 996, and ν (C-S-N) 754. The TGA (Shimadzu thermogravimetric analyser) showed a distinct weight loss between 412 and 439 K corresponding to loss of two OMe fragments. Subsequent weight loss occurred, resulting in the clean formation of SnS beyond 895 K.

Crystal data

$\begin{split} & [\text{Sn}_2(\text{C}_7\text{H}_7)_2(\text{C}_8\text{H}_6\text{ClN}_3\text{OS})_{2^-} \\ & (\text{CH}_3\text{O})_2] \\ & M_r = 937.04 \\ & \text{Monoclinic, } P_2_1/c \\ & a = 11.617 \ (7) \ \text{\AA} \\ & b = 13.484 \ (4) \ \text{\AA} \\ & c = 12.430 \ (4) \ \text{\AA} \\ & \beta = 117.367 \ (5)^\circ \end{split}$	$V = 1729.1 (13) Å^{3}$ Z = 2 $D_{x} = 1.800 \text{ Mg m}^{-3}$ Mo K\alpha radiation $\mu = 1.77 \text{ mm}^{-1}$ T = 173 (2) K Prism, pale yellow $0.15 \times 0.05 \times 0.05 \text{ mm}$
Data collection	
Rigaku AFC12K/SATURN724 diffractometer ω scans Absorption correction: multi-scan	44284 measured reflections 3906 independent reflections 3887 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.051$

Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\min} = 0.813, T_{\max} = 1$ (expected range = 0.744–0.915)

 $\theta_{\rm max} = 27.6^\circ$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0396P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.050$	+ 5.0883P]
$wR(F^2) = 0.117$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.22	$(\Delta/\sigma)_{\rm max} < 0.001$
3906 reflections	$\Delta \rho_{\rm max} = 0.99 \ {\rm e} \ {\rm \AA}^{-3}$
218 parameters	$\Delta \rho_{\rm min} = -0.77 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

Sn-S1	2.4945 (16)	O1-C4	1.326 (6)
Sn-N3	2.221 (4)	O2-C16	1.430 (6)
Sn-O1	2.045 (3)	N1-C1	1.343 (6)
Sn-O2	2.108 (3)	N2-N3	1.388 (5)
Sn-C9	2.168 (5)	N2-C1	1.317 (6)
Sn-O2 ⁱ	2.164 (3)	N3-C2	1.289 (6)
S1-C1	1.753 (5)		
S1-Sn-O1	162.51 (9)	O2-Sn-O2 ⁱ	72.46 (13)
S1-Sn-O2	99.97 (10)	C9-Sn-O2 ⁱ	167.90 (16)
S1-Sn-N3	78.35 (10)	C9-Sn-N3	103.09 (16)
S1-Sn-C9	99.41 (15)	N3-Sn-O2 ⁱ	86.36 (13)
S1-Sn-O2 ⁱ	89.82 (10)	Sn-S1-C1	94.97 (18)
O1-Sn-O2	93.59 (13)	Sn-O1-C4	126.4 (3)
O1-Sn-N3	85.00 (13)	Sn-O2-C16	118.9 (3)
O1-Sn-C9	89.49 (17)	Sn ⁱ -O2-C16	123.0 (3)
$O1-Sn-O2^{i}$	83.75 (14)	Sn-O2-Sn ⁱ	107.54 (13)
O2-Sn-N3	158.79 (14)	Sn-N3-N2	119.9 (3)
O2-Sn-C9	98.05 (15)	Sn-N3-C2	124.3 (3)

Symmetry code: (i) -x, -y, -z.

H atoms were included in the riding-model approximation with C-H = 0.95 Å to 0.99 Å, and N-H = 0.88 Å, and with $U_{iso}(H) =$

 $1.5U_{eq}(C)$ for methyl, and $1.2U_{eq}(C,N)$ for the remaining H atoms.

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *PATTY* in *DIRDIF92* (Beurskens *et al.*, 1992); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976) and *DIAMOND* (Crystal Impact, 2006); software used to prepare material for publication: *SHELXL97*.

MSS is grateful to the UGC, New Delhi, for a Junior Research Fellowship and AR for a UGC-SAP grant, respectively.

References

- Basuli, F., Ruf, M., Pierpont, C. G. & Bhattacharya, S. (1998). *Inorg. Chem.* 37, 6113–6116.
- Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). *The DIRDIF Program System*. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.
- Crystal Impact (2006). DIAMOND. Version 3.1. Crystal Impact GbR, Postfach 1251, D-53002 Bonn, Germany.
- Farrell, N. (2002). Coord. Chem. Rev. 232, 1-4.
- Gielen, M. & Tiekink, E. R. T. (2005). Metallotherapeutic Drugs and Metal-Based Diagnostic Agents, edited by M. Gielen & E. R. T. Tiekink, pp. 421– 439. Chichester: John Wiley & Sons Ltd.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Akishima, Tokyo, Japan.
- Johnson, C. K. (1976). ORTEPH. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Rigaku (2005). CrystalClear User Manual. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Sisido, K., Takeda, Y. & Kinugawa, Z. (1961). J. Am. Chem. Soc. 83, 538-541.